Learning and generalization of auditory temporal-interval discrimination in humans.

نویسندگان

  • B A Wright
  • D V Buonomano
  • H W Mahncke
  • M M Merzenich
چکیده

The sensory encoding of the duration, interval, and order of different stimulus features provides vital information to the nervous system. The present study focuses on the influence of practice on auditory temporal-interval discrimination. The goals of the experiment were to determine (1) whether practice improved the ability to discriminate a standard interval of 100 msec bounded by brief 1 kHz tones from longer intervals, and, if so, (2) whether this improvement generalized to different tonal frequencies or temporal intervals. Learning was examined in 14 human subjects using an adaptive, two-alternative, forced-choice procedure. One hour of training per day for 10 d led to marked improvements in the ability to discriminate between the standard and longer intervals. The generalization of learning was evaluated by independently varying the spectral (tonal frequency) and temporal (interval) components of the stimuli in four conditions tested both before and after the training phase. Remarkably, there was complete generalization to the trained interval of 100 msec bounded by tones at the untrained frequency of 4 kHz, but no generalization to the untrained intervals of 50, 200, or 500 msec bounded by tones at the trained frequency of 1 kHz. Thus, these data show that (1) temporal-interval discrimination using a 100-msec standard undergoes perceptual learning, and (2) the neural mechanisms underlying this learning are temporally, but not spectrally, specific. These results are compared with those from previous investigations of learning in visual spatial tasks, and are discussed in relation to biologically plausible models of temporal processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Functional Connectivity Changes During Learning of Time Discrimination

The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...

متن کامل

Temporal specificity of perceptual learning in an auditory discrimination task.

Although temporal processing is used in a wide range of sensory and motor tasks, there is little evidence as to whether a single centralized clock or a distributed system underlies timing in the range of tens to hundreds of milliseconds. We investigated this question by studying whether learning on an auditory interval discrimination task generalizes across stimulus types, intervals, and freque...

متن کامل

Practice-related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphere, and modality.

This paper concerns the characterization of performance and perceptual learning of somatosensory interval discrimination. The purposes of this study were to define (1) the performance characteristics for interval discrimination in the somatosensory system by naive adult humans, (2) the normal capacities for improvement in somatosensory interval discrimination, and (3) the extent of generalizati...

متن کامل

سایکوآکوستیک و درک گفتار در افراد مبتلا به نوروپاتی شنوایی و افراد طبیعی

Background: The main result of hearing impairment is reduction of speech perception. Patient with auditory neuropathy can hear but they can not understand. Their difficulties have been traced to timing related deficits, revealing the importance of the neural encoding of timing cues for understanding speech. Objective: In the present study psychoacoustic perception (minimal noticeable differen...

متن کامل

Increased Signal Complexity Improves the Breadth of Generalization in Auditory Perceptual Learning

Perceptual learning can be specific to a trained stimulus or optimally generalized to novel stimuli with the breadth of generalization being imperative for how we structure perceptual training programs. Adapting an established auditory interval discrimination paradigm to utilise complex signals, we trained human adults on a standard interval for either 2, 4, or 10 days. We then tested the stand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 10  شماره 

صفحات  -

تاریخ انتشار 1997